Combining evolution strategy and gradient descent method for discriminative learning of bayesian classifiers

Xuefeng Chen, Xiabi Liu, Yunde Jia
{"title":"Combining evolution strategy and gradient descent method for discriminative learning of bayesian classifiers","authors":"Xuefeng Chen, Xiabi Liu, Yunde Jia","doi":"10.1145/1569901.1569972","DOIUrl":null,"url":null,"abstract":"The optimization method is one of key issues in discriminative learning of pattern classifiers. This paper proposes a hybrid approach of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the gradient decent method for optimizing Bayesian classifiers under the SOFT target based Max-Min posterior Pseudo-probabilities (Soft-MMP) learning framework. In our hybrid optimization approach, the weighted mean of the parent population in the CMA-ES is adjusted by exploiting the gradient information of objective function, based on which the offspring is generated. As a result, the efficiency and the effectiveness of the CMA-ES are improved. We apply the Soft-MMP with the proposed hybrid optimization approach to handwritten digit recognition. The experiments on the CENPARMI database show that our handwritten digit classifier outperforms other state-of-the-art techniques. Furthermore, our hybrid optimization approach behaved better than not only the single gradient decent method but also the single CMA-ES in the experiments.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The optimization method is one of key issues in discriminative learning of pattern classifiers. This paper proposes a hybrid approach of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the gradient decent method for optimizing Bayesian classifiers under the SOFT target based Max-Min posterior Pseudo-probabilities (Soft-MMP) learning framework. In our hybrid optimization approach, the weighted mean of the parent population in the CMA-ES is adjusted by exploiting the gradient information of objective function, based on which the offspring is generated. As a result, the efficiency and the effectiveness of the CMA-ES are improved. We apply the Soft-MMP with the proposed hybrid optimization approach to handwritten digit recognition. The experiments on the CENPARMI database show that our handwritten digit classifier outperforms other state-of-the-art techniques. Furthermore, our hybrid optimization approach behaved better than not only the single gradient decent method but also the single CMA-ES in the experiments.
结合进化策略和梯度下降法的贝叶斯分类器判别学习
优化方法是模式分类器判别学习的关键问题之一。在基于SOFT目标的最大-最小后验伪概率(SOFT - mmp)学习框架下,提出了一种基于协方差矩阵自适应进化策略(CMA-ES)和梯度优化方法的贝叶斯分类器优化方法。在混合优化方法中,利用目标函数的梯度信息对CMA-ES中亲本种群的加权均值进行调整,在此基础上生成后代。从而提高了CMA-ES的效率和有效性。我们将Soft-MMP与所提出的混合优化方法应用于手写数字识别。在CENPARMI数据库上的实验表明,我们的手写数字分类器优于其他最先进的技术。实验结果表明,混合优化方法不仅优于单一梯度优化方法,而且优于单一CMA-ES优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信