Hierarchical Network Partitioning for Reconfigurable Large-Scale Neuromorphic Systems

Nishant Mysore, Gopabandhu Hota, S. Deiss, B. Pedroni, G. Cauwenberghs
{"title":"Hierarchical Network Partitioning for Reconfigurable Large-Scale Neuromorphic Systems","authors":"Nishant Mysore, Gopabandhu Hota, S. Deiss, B. Pedroni, G. Cauwenberghs","doi":"10.1109/ICRC53822.2021.00020","DOIUrl":null,"url":null,"abstract":"We present an efficient and scalable partitioning method for mapping large-scale neural network models to reconfigurable neuromorphic hardware. The partitioning framework is optimized for compute-balanced, memory -efficient parallel processing targeting low-latency execution and dense synaptic storage, with minimal routing across various compute cores. We demonstrate highly scalable and efficient partitioning for connectivity-aware and hierarchical address-event routing resource-optimized mapping, significantly reducing the total communication volume recursively when compared to random balanced assignment. We evaluate the partitioning algorithm on synthetic small-world networks with varying degrees of sparsity factor and fan-out. The combination of our method and practical results suggest a promising path towards extending to very large-scale networks and more degrees of hierarchy.","PeriodicalId":139766,"journal":{"name":"2021 International Conference on Rebooting Computing (ICRC)","volume":"11 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC53822.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an efficient and scalable partitioning method for mapping large-scale neural network models to reconfigurable neuromorphic hardware. The partitioning framework is optimized for compute-balanced, memory -efficient parallel processing targeting low-latency execution and dense synaptic storage, with minimal routing across various compute cores. We demonstrate highly scalable and efficient partitioning for connectivity-aware and hierarchical address-event routing resource-optimized mapping, significantly reducing the total communication volume recursively when compared to random balanced assignment. We evaluate the partitioning algorithm on synthetic small-world networks with varying degrees of sparsity factor and fan-out. The combination of our method and practical results suggest a promising path towards extending to very large-scale networks and more degrees of hierarchy.
可重构大规模神经形态系统的分层网络划分
我们提出了一种高效、可扩展的划分方法,用于将大规模神经网络模型映射到可重构的神经形态硬件。分区框架针对计算平衡、内存高效的并行处理进行了优化,目标是低延迟执行和密集的突触存储,并且在各种计算核心之间具有最小的路由。我们展示了用于连接感知和分层地址-事件路由资源优化映射的高可扩展和高效分区,与随机平衡分配相比,显着递归地减少了总通信量。在具有不同稀疏度因子和扇形分布的合成小世界网络上对分区算法进行了评价。我们的方法和实际结果的结合为扩展到非常大规模的网络和更多层次提供了一条有希望的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信