Knowledge Discovery in Distributed Biological Datasets Using Fuzzy Cellular Automata

P. Maji, Chandra Das
{"title":"Knowledge Discovery in Distributed Biological Datasets Using Fuzzy Cellular Automata","authors":"P. Maji, Chandra Das","doi":"10.1109/ICISIP.2005.1619430","DOIUrl":null,"url":null,"abstract":"Recent advancement and wide use of highthroughput technologies for biological research are producing enormous size of biological datasets distributed worldwide. Data mining techniques and machine learning methods provide useful tools for knowledge discovery in this field. The goal of this paper is to present the design of a pattern classifier to mine distributed biological dataset. The proposed classifier is built around a special class of computing model termed as Fuzzy Cellular Automata (FCA). A concrete example of the effectiveness of this approach is provided by demonstrating its success in gene identification problem. Extensive experimental results confirm the scalability of the FCA to handle distributed biological datasets. Application of the proposed model to solve gene identification problem establishes the FCA as the classifier ideally suited for biological data mining in a distributed environment.","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"25 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent advancement and wide use of highthroughput technologies for biological research are producing enormous size of biological datasets distributed worldwide. Data mining techniques and machine learning methods provide useful tools for knowledge discovery in this field. The goal of this paper is to present the design of a pattern classifier to mine distributed biological dataset. The proposed classifier is built around a special class of computing model termed as Fuzzy Cellular Automata (FCA). A concrete example of the effectiveness of this approach is provided by demonstrating its success in gene identification problem. Extensive experimental results confirm the scalability of the FCA to handle distributed biological datasets. Application of the proposed model to solve gene identification problem establishes the FCA as the classifier ideally suited for biological data mining in a distributed environment.
基于模糊元胞自动机的分布式生物数据集知识发现
近年来,高通量技术在生物研究中的广泛应用和进步,产生了分布在世界各地的庞大的生物数据集。数据挖掘技术和机器学习方法为这一领域的知识发现提供了有用的工具。本文的目标是设计一种模式分类器来挖掘分布式生物数据集。所提出的分类器是围绕一类称为模糊元胞自动机(FCA)的特殊计算模型构建的。通过在基因鉴定问题上的成功,提供了该方法有效性的具体实例。大量的实验结果证实了FCA处理分布式生物数据集的可扩展性。将该模型应用于解决基因识别问题,使FCA成为分布式环境下生物数据挖掘的理想分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信