{"title":"Application of the curvature scale space transform to the representation of three-dimensional models","authors":"D. Frejlichowski","doi":"10.2478/v10248-012-0087-y","DOIUrl":null,"url":null,"abstract":"Abstract In this paper an algorithm for the representation of 3D models is described and experimentally evaluated. Three-dimensional objects are becoming very popular recently and they are processed in various ways - analysed, retrieved, recognised, and so on. Moreover, they are employed in various aplications, such as virtual reality, entertainment, Internet, Computer Aided Design, or even in biometrics or medical imaging. That is why the development of appropriate algorithms for the representation of 3D objects is so important recently. These algorithms - so called 3D shape descriptors - are assumed to be invariant to particular transformations and deformations. One of the possible approaches is based on the projections of a 3D object into planar shapes and representation of them using a 2D shape descriptor. An algorithm realising this idea is described in this paper. Its first stage is based on the rendering of 20 2D projections, from various points of view. Later, the obtained projections are stored in a form of bitmaps and the Curvature Scale Space algorithm is applied for the description of the planar shapes extracted from them. The proposed approach is experimentally compared with several other 3D shape representation methods.","PeriodicalId":271906,"journal":{"name":"Image Processing & Communications","volume":"96 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Processing & Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10248-012-0087-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper an algorithm for the representation of 3D models is described and experimentally evaluated. Three-dimensional objects are becoming very popular recently and they are processed in various ways - analysed, retrieved, recognised, and so on. Moreover, they are employed in various aplications, such as virtual reality, entertainment, Internet, Computer Aided Design, or even in biometrics or medical imaging. That is why the development of appropriate algorithms for the representation of 3D objects is so important recently. These algorithms - so called 3D shape descriptors - are assumed to be invariant to particular transformations and deformations. One of the possible approaches is based on the projections of a 3D object into planar shapes and representation of them using a 2D shape descriptor. An algorithm realising this idea is described in this paper. Its first stage is based on the rendering of 20 2D projections, from various points of view. Later, the obtained projections are stored in a form of bitmaps and the Curvature Scale Space algorithm is applied for the description of the planar shapes extracted from them. The proposed approach is experimentally compared with several other 3D shape representation methods.