{"title":"Generalized Behavioral Models of Three-Phase Converters and Electric Machines for System-Level Study and Stability Assessment","authors":"I. Cvetkovic, D. Boroyevich, R. Burgos, Z. Liu","doi":"10.1109/PEDG48541.2020.9244432","DOIUrl":null,"url":null,"abstract":"New electronic power distribution systems built for airplanes, ships, electric vehicles, data-centers, nano- and microgrids dominantly comprise a variety of power electronics converters with very different dynamic characteristics. Other than the information from datasheets, system integrators have no deeper insight into dynamic behavior and interactions between system components before they integrate particular systems. This paper presents a generalized black-box modeling method of three-phase inverters, rectifiers, motors, and generators for system-level study and on-line stability assessment. Especially interesting for OEM, this methodology allows equipment manufacturers to provide behavioral models of their components without disclosing proprietary information such as topology, structure, control loops parameters, etc., while system integrator can truly benefit from using these models for their (better) system-level design.","PeriodicalId":249484,"journal":{"name":"2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG48541.2020.9244432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
New electronic power distribution systems built for airplanes, ships, electric vehicles, data-centers, nano- and microgrids dominantly comprise a variety of power electronics converters with very different dynamic characteristics. Other than the information from datasheets, system integrators have no deeper insight into dynamic behavior and interactions between system components before they integrate particular systems. This paper presents a generalized black-box modeling method of three-phase inverters, rectifiers, motors, and generators for system-level study and on-line stability assessment. Especially interesting for OEM, this methodology allows equipment manufacturers to provide behavioral models of their components without disclosing proprietary information such as topology, structure, control loops parameters, etc., while system integrator can truly benefit from using these models for their (better) system-level design.