Advanced targets association based on GPU computation of PHD function

J. Pidanic, T. Shejbal, Z. Nemec, H. Suhartanto
{"title":"Advanced targets association based on GPU computation of PHD function","authors":"J. Pidanic, T. Shejbal, Z. Nemec, H. Suhartanto","doi":"10.1109/ICACSIS.2015.7415197","DOIUrl":null,"url":null,"abstract":"The precise and quick association of targets is one of the main challenging tasks in the signal processing field of the Multistatic Radar System (MRS). The paper deals with target association techniques based on the computation of the Probability Hypothetic Density (PHD) Function. The Computation time makes solving the PHD a very demanding task. The speedup of a newly developed algorithm depends on vectorization and parallel processing techniques. This paper describes the comparison between the original and parallel version of the target association algorithm with the full set of input data (without any knowledge about the approximation of targets direction) and the comparison with the advanced target association algorithm using additional input information about the direction of the target. All algorithms are processed in the MATLAB environment and Microsoft Visual Studio - C. The comparison also includes Central Processor Unit (CPU) and Graphics Processor Unit (GPU) version of all algorithms.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The precise and quick association of targets is one of the main challenging tasks in the signal processing field of the Multistatic Radar System (MRS). The paper deals with target association techniques based on the computation of the Probability Hypothetic Density (PHD) Function. The Computation time makes solving the PHD a very demanding task. The speedup of a newly developed algorithm depends on vectorization and parallel processing techniques. This paper describes the comparison between the original and parallel version of the target association algorithm with the full set of input data (without any knowledge about the approximation of targets direction) and the comparison with the advanced target association algorithm using additional input information about the direction of the target. All algorithms are processed in the MATLAB environment and Microsoft Visual Studio - C. The comparison also includes Central Processor Unit (CPU) and Graphics Processor Unit (GPU) version of all algorithms.
基于GPU计算的PHD函数高级目标关联
精确、快速的目标关联是多基地雷达信号处理领域的主要挑战之一。本文研究了基于概率假设密度函数计算的目标关联技术。由于计算时间的限制,求解PHD是一项非常艰巨的任务。一种新开发的算法的加速依赖于向量化和并行处理技术。本文描述了原始版本的目标关联算法与并行版本的目标关联算法在完整的输入数据(不知道目标方向的近似)下的比较,以及与使用额外的目标方向输入信息的高级目标关联算法的比较。所有算法都在MATLAB环境和Microsoft Visual Studio - c中进行处理,并比较了所有算法的中央处理器(CPU)和图形处理器(GPU)版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信