{"title":"A Multi-dimensional Real World Spectrum Occupancy Data Measurement and Analysis for Spectrum Inference in Cognitive Radio Network","authors":"Mudassar Husain Naikwadi, K. Patil","doi":"10.17762/ijcnis.v14i2.5516","DOIUrl":null,"url":null,"abstract":"Spectrum Inference in contrast to Spectrum Sensing is an active technique for dynamically inferring radio spectrum state in Cognitive Radio Networks. Efficient spectrum inference demands real world multi-dimensional spectral data with distinct features. Spectrum bands exhibit varying noise floors; an effective band wise noise thresholding guarantees an accurate occupancy data. In this work, we have done an extensive real world spectrum occupancy data measurement in frequency range 0.7 GHz to 3 GHz for tele density wise varying locations at Pune, Solapur and Kalaburagi with time diversity ranging from 2 to 7 days. We have applied maximum noise (Max Noise), m-dB and probability of false alarm (PFA) noise thresholding for spectrum occupancy calculations in all bands and across all locations. Overall occupancy across these locations is 37.89 %, 18.90 % and 13.69 % respectively. We have studied signal to noise ratio (SNR), channel vacancy length durations (CVLD) and service congestion rates (SCR) as characteristic features of measured multi-dimensional spectrum data. The results reveal strong time, spectral and spatial correlations of these features across all locations. These features can be used for a multi-dimensional spectrum inference in cognitive radio based on machine learning.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i2.5516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Spectrum Inference in contrast to Spectrum Sensing is an active technique for dynamically inferring radio spectrum state in Cognitive Radio Networks. Efficient spectrum inference demands real world multi-dimensional spectral data with distinct features. Spectrum bands exhibit varying noise floors; an effective band wise noise thresholding guarantees an accurate occupancy data. In this work, we have done an extensive real world spectrum occupancy data measurement in frequency range 0.7 GHz to 3 GHz for tele density wise varying locations at Pune, Solapur and Kalaburagi with time diversity ranging from 2 to 7 days. We have applied maximum noise (Max Noise), m-dB and probability of false alarm (PFA) noise thresholding for spectrum occupancy calculations in all bands and across all locations. Overall occupancy across these locations is 37.89 %, 18.90 % and 13.69 % respectively. We have studied signal to noise ratio (SNR), channel vacancy length durations (CVLD) and service congestion rates (SCR) as characteristic features of measured multi-dimensional spectrum data. The results reveal strong time, spectral and spatial correlations of these features across all locations. These features can be used for a multi-dimensional spectrum inference in cognitive radio based on machine learning.