Nikos Dimitropoulos, Nikolaos Sofias, Panagiotis Kapsalis, Z. Mylona, Vangelis Marinakis, Niccolo Primo, H. Doukas
{"title":"Forecasting of short-term PV production in energy communities through Machine Learning and Deep Learning algorithms","authors":"Nikos Dimitropoulos, Nikolaos Sofias, Panagiotis Kapsalis, Z. Mylona, Vangelis Marinakis, Niccolo Primo, H. Doukas","doi":"10.1109/IISA52424.2021.9555544","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) modules and solar plants are one of the main drivers towards zero-carbon future. Energy communities that are engaging citizens through collective energy actions can reinforce positive social norms and support the energy transition. Furthermore, by incorporating Artificial Intelligence (AI) techniques, innovative applications can be developed with huge potential, such as supply and demand management, energy efficiency actions, grid operations and maintenance actions. In this context, the scope of this paper is to present an approach for forecasting an energy cooperative’s solar plant short term production by using its infrastructure and monitoring system. More specifically, four Machine Learning (ML) and Deep Learning (DL) algorithms are proposed and trained in an operational solar plant producing high accuracy short-term forecasts up to 6 hours. The results can be used for scheduling supply of the energy communities and set the base for more complex applications that require accurate short-term predictions, such as predictive maintenance.","PeriodicalId":437496,"journal":{"name":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA52424.2021.9555544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Photovoltaic (PV) modules and solar plants are one of the main drivers towards zero-carbon future. Energy communities that are engaging citizens through collective energy actions can reinforce positive social norms and support the energy transition. Furthermore, by incorporating Artificial Intelligence (AI) techniques, innovative applications can be developed with huge potential, such as supply and demand management, energy efficiency actions, grid operations and maintenance actions. In this context, the scope of this paper is to present an approach for forecasting an energy cooperative’s solar plant short term production by using its infrastructure and monitoring system. More specifically, four Machine Learning (ML) and Deep Learning (DL) algorithms are proposed and trained in an operational solar plant producing high accuracy short-term forecasts up to 6 hours. The results can be used for scheduling supply of the energy communities and set the base for more complex applications that require accurate short-term predictions, such as predictive maintenance.