DF-Conformer: Integrated Architecture of Conv-Tasnet and Conformer Using Linear Complexity Self-Attention for Speech Enhancement

Yuma Koizumi, Shigeki Karita, Scott Wisdom, Hakan Erdogan, J. Hershey, Llion Jones, M. Bacchiani
{"title":"DF-Conformer: Integrated Architecture of Conv-Tasnet and Conformer Using Linear Complexity Self-Attention for Speech Enhancement","authors":"Yuma Koizumi, Shigeki Karita, Scott Wisdom, Hakan Erdogan, J. Hershey, Llion Jones, M. Bacchiani","doi":"10.1109/WASPAA52581.2021.9632794","DOIUrl":null,"url":null,"abstract":"Single-channel speech enhancement (SE) is an important task in speech processing. A widely used framework combines an anal-ysis/synthesis filterbank with a mask prediction network, such as the Conv-TasNet architecture. In such systems, the denoising performance and computational efficiency are mainly affected by the structure of the mask prediction network. In this study, we aim to improve the sequential modeling ability of Conv-TasNet architectures by integrating Conformer layers into a new mask prediction network. To make the model computationally feasible, we extend the Conformer using linear complexity attention and stacked 1-D dilated depthwise convolution layers. We trained the model on 3,396 hours of noisy speech data, and show that (i) the use of linear complexity attention avoids high computational complexity, and (ii) our model achieves higher scale-invariant signal-to-noise ratio than the improved time-dilated convolution network (TDCN++), an extended version of Conv-TasNet.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Single-channel speech enhancement (SE) is an important task in speech processing. A widely used framework combines an anal-ysis/synthesis filterbank with a mask prediction network, such as the Conv-TasNet architecture. In such systems, the denoising performance and computational efficiency are mainly affected by the structure of the mask prediction network. In this study, we aim to improve the sequential modeling ability of Conv-TasNet architectures by integrating Conformer layers into a new mask prediction network. To make the model computationally feasible, we extend the Conformer using linear complexity attention and stacked 1-D dilated depthwise convolution layers. We trained the model on 3,396 hours of noisy speech data, and show that (i) the use of linear complexity attention avoids high computational complexity, and (ii) our model achieves higher scale-invariant signal-to-noise ratio than the improved time-dilated convolution network (TDCN++), an extended version of Conv-TasNet.
DF-Conformer:基于线性复杂度自注意的卷积- tasnet和Conformer的集成体系结构
单通道语音增强是语音处理中的一个重要课题。一个广泛使用的框架结合了一个分析/合成滤波器组和一个掩码预测网络,如卷积- tasnet架构。在这种系统中,掩模预测网络的结构主要影响去噪性能和计算效率。在这项研究中,我们的目标是通过将Conformer层集成到一个新的掩模预测网络中来提高卷积- tasnet体系结构的顺序建模能力。为了使模型在计算上可行,我们使用线性复杂度关注和堆叠1-D扩展深度卷积层来扩展Conformer。我们在3396小时的有噪声语音数据上训练了模型,结果表明:(i)使用线性复杂度注意避免了高计算复杂度,(ii)我们的模型比改进的时间扩张卷积网络(tdcn++)实现了更高的尺度不变信噪比,tdcn++是卷积- tasnet的扩展版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信