Hausdorff dimension of limit sets for projective Anosov representations

Olivier Glorieux, Daniel Monclair, Nicolas Tholozan
{"title":"Hausdorff dimension of limit sets for projective Anosov representations","authors":"Olivier Glorieux, Daniel Monclair, Nicolas Tholozan","doi":"10.5802/jep.241","DOIUrl":null,"url":null,"abstract":"We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\\mathbf{P}(\\mathbb{R}^{n}) \\times \\mathbf{P}({\\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\mathbf{P}(\mathbb{R}^{n}) \times \mathbf{P}({\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.
投影Anosov表示的极限集的Hausdorff维数
研究了射影Anosov表示的极限集的临界指数与Hausdorff维数之间的关系。证明了$\mathbf{P}(\mathbb{R}^{n}) \乘以\mathbf{P}({\mathbb{R}^{n}}^*)$中的对称极限集的Hausdorff维数有界于分别与最高权值和单根相关的两个临界指数之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信