{"title":"Bounding the Number of Self-Blocking Occurrences of SIRAP","authors":"M. Behnam, Thomas Nolte, R. J. Bril","doi":"10.1109/RTSS.2010.20","DOIUrl":null,"url":null,"abstract":"This paper presents a new schedulability analysis for hierarchically scheduled real-time systems executing on a single processor using SIRAP, a synchronization protocol for inter subsystem task synchronization. We show that it is possible to bound the number of self-blocking occurrences that should be taken into consideration in the schedulability analysis of subsystems. Correspondingly, we present two novel schedulability analysis approaches with proof of correctness for SIRAP. An evaluation suggests that this new schedulability analysis can decrease the analytical subsystem utilization significantly.","PeriodicalId":202891,"journal":{"name":"2010 31st IEEE Real-Time Systems Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 31st IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper presents a new schedulability analysis for hierarchically scheduled real-time systems executing on a single processor using SIRAP, a synchronization protocol for inter subsystem task synchronization. We show that it is possible to bound the number of self-blocking occurrences that should be taken into consideration in the schedulability analysis of subsystems. Correspondingly, we present two novel schedulability analysis approaches with proof of correctness for SIRAP. An evaluation suggests that this new schedulability analysis can decrease the analytical subsystem utilization significantly.