Unsupervised Clustering using Multi-Resolution Perceptual Grouping

T. Syeda-Mahmood, Fei Wang
{"title":"Unsupervised Clustering using Multi-Resolution Perceptual Grouping","authors":"T. Syeda-Mahmood, Fei Wang","doi":"10.1109/CVPR.2007.382986","DOIUrl":null,"url":null,"abstract":"Clustering is a common operation for data partitioning in many practical applications. Often, such data distributions exhibit higher level structures which are important for problem characterization, but are not explicitly discovered by existing clustering algorithms. In this paper, we introduce multi-resolution perceptual grouping as an approach to unsupervised clustering. Specifically, we use the perceptual grouping constraints of proximity, density, contiguity and orientation similarity. We apply these constraints in a multi-resolution fashion, to group sample points in high dimensional spaces into salient clusters. We present an extensive evaluation of the clustering algorithm against state-of-the-art supervised and unsupervised clustering methods on large datasets.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.382986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Clustering is a common operation for data partitioning in many practical applications. Often, such data distributions exhibit higher level structures which are important for problem characterization, but are not explicitly discovered by existing clustering algorithms. In this paper, we introduce multi-resolution perceptual grouping as an approach to unsupervised clustering. Specifically, we use the perceptual grouping constraints of proximity, density, contiguity and orientation similarity. We apply these constraints in a multi-resolution fashion, to group sample points in high dimensional spaces into salient clusters. We present an extensive evaluation of the clustering algorithm against state-of-the-art supervised and unsupervised clustering methods on large datasets.
基于多分辨率感知分组的无监督聚类
在许多实际应用中,聚类是一种常见的数据分区操作。通常,这样的数据分布表现出对问题表征很重要的高级结构,但现有的聚类算法没有明确地发现这些结构。本文引入多分辨率感知分组作为一种无监督聚类方法。具体来说,我们使用了接近性、密度、邻近性和方向相似性的感知分组约束。我们以多分辨率的方式应用这些约束,将高维空间中的样本点分组为显著簇。我们对大型数据集上最先进的监督和无监督聚类方法的聚类算法进行了广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信