Diagnosis of Esophagitis Based on Deep Learning

Yuling Hou, Luhong Diao, Na Lu, Ying Li, Yong Qiao
{"title":"Diagnosis of Esophagitis Based on Deep Learning","authors":"Yuling Hou, Luhong Diao, Na Lu, Ying Li, Yong Qiao","doi":"10.1109/ICAA53760.2021.00075","DOIUrl":null,"url":null,"abstract":"With the advent of the information age, medical image classification technology has become a hot research topic in the field of computer vision. Based on the Tensorflow deep learning framework, a ResNet model of esophagitis disease recognition from gastrointestinal mirror image is established in this paper. Further, the random erasing data augmentation algorithm RE is applied to optimizing the images, which are then used in the network. As a result, the accuracy of the optimized network over the Kvasir data set can reach 97%.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of the information age, medical image classification technology has become a hot research topic in the field of computer vision. Based on the Tensorflow deep learning framework, a ResNet model of esophagitis disease recognition from gastrointestinal mirror image is established in this paper. Further, the random erasing data augmentation algorithm RE is applied to optimizing the images, which are then used in the network. As a result, the accuracy of the optimized network over the Kvasir data set can reach 97%.
基于深度学习的食管炎诊断
随着信息时代的到来,医学图像分类技术已成为计算机视觉领域的研究热点。基于Tensorflow深度学习框架,建立了一种基于胃肠道镜像的食管炎疾病识别的ResNet模型。然后,应用随机擦除数据增强算法RE对图像进行优化,然后将其用于网络中。结果表明,优化后的网络在Kvasir数据集上的准确率可达97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信