Audio Captioning with Composition of Acoustic and Semantic Information

Aysegül Özkaya Eren, M. Sert
{"title":"Audio Captioning with Composition of Acoustic and Semantic Information","authors":"Aysegül Özkaya Eren, M. Sert","doi":"10.1142/S1793351X21400018","DOIUrl":null,"url":null,"abstract":"Generating audio captions is a new research area that combines audio and natural language processing to create meaningful textual descriptions for audio clips. To address this problem, previous studies mostly use the encoder–decoder-based models without considering semantic information. To fill this gap, we present a novel encoder–decoder architecture using bi-directional Gated Recurrent Units (BiGRU) with audio and semantic embeddings. We extract semantic embedding by obtaining subjects and verbs from the audio clip captions and combine these embedding with audio embedding to feed the BiGRU-based encoder–decoder model. To enable semantic embeddings for the test audios, we introduce a Multilayer Perceptron classifier to predict the semantic embeddings of those clips. We also present exhaustive experiments to show the efficiency of different features and datasets for our proposed model the audio captioning task. To extract audio features, we use the log Mel energy features, VGGish embeddings, and a pretrained audio neural network (PANN) embeddings. Extensive experiments on two audio captioning datasets Clotho and AudioCaps show that our proposed model outperforms state-of-the-art audio captioning models across different evaluation metrics and using the semantic information improves the captioning performance.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X21400018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Generating audio captions is a new research area that combines audio and natural language processing to create meaningful textual descriptions for audio clips. To address this problem, previous studies mostly use the encoder–decoder-based models without considering semantic information. To fill this gap, we present a novel encoder–decoder architecture using bi-directional Gated Recurrent Units (BiGRU) with audio and semantic embeddings. We extract semantic embedding by obtaining subjects and verbs from the audio clip captions and combine these embedding with audio embedding to feed the BiGRU-based encoder–decoder model. To enable semantic embeddings for the test audios, we introduce a Multilayer Perceptron classifier to predict the semantic embeddings of those clips. We also present exhaustive experiments to show the efficiency of different features and datasets for our proposed model the audio captioning task. To extract audio features, we use the log Mel energy features, VGGish embeddings, and a pretrained audio neural network (PANN) embeddings. Extensive experiments on two audio captioning datasets Clotho and AudioCaps show that our proposed model outperforms state-of-the-art audio captioning models across different evaluation metrics and using the semantic information improves the captioning performance.
声学和语义信息组合的音频字幕
生成音频字幕是将音频和自然语言处理相结合,为音频片段创建有意义的文本描述的一个新的研究领域。为了解决这一问题,以往的研究大多采用基于编码器-解码器的模型,没有考虑语义信息。为了填补这一空白,我们提出了一种新的编码器-解码器架构,使用带有音频和语义嵌入的双向门控循环单元(BiGRU)。我们通过从音频片段字幕中获取主语和动词来提取语义嵌入,并将这些嵌入与音频嵌入相结合,以提供基于bigru的编码器-解码器模型。为了对测试音频进行语义嵌入,我们引入了一个多层感知器分类器来预测这些片段的语义嵌入。我们还提供了详尽的实验来证明不同特征和数据集对我们提出的音频字幕任务模型的效率。为了提取音频特征,我们使用了对数Mel能量特征、VGGish嵌入和预训练的音频神经网络(PANN)嵌入。在两个音频字幕数据集Clotho和AudioCaps上进行的大量实验表明,我们提出的模型在不同的评估指标上优于最先进的音频字幕模型,并且使用语义信息提高了字幕性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信