Wearable Device-Based Data Collection and Feature Analysis Method for Outdoor Sports

Ju-Yeun An
{"title":"Wearable Device-Based Data Collection and Feature Analysis Method for Outdoor Sports","authors":"Ju-Yeun An","doi":"10.4018/ijdst.307992","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid popularization of smart phones and wearable smart devices, it is no longer difficult to obtain a large number of human motion data related to people's heart rate and geographical location, which has spawned a series of running fitness applications, leading to the national running wave and promoting the rapid development of the sports industry. Based on the long short-term memory cyclic neural network, this paper processes, identifies, and analyzes the motion data collected by wearable devices. Through massive data training, a set of accurate auxiliary models of outdoor sports is obtained to help optimize and improve the effect of outdoor sports. The results show that the method proposed in this paper has a higher degree of sports action and feature recognition and can better assist in the completion of outdoor sports.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.307992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, with the rapid popularization of smart phones and wearable smart devices, it is no longer difficult to obtain a large number of human motion data related to people's heart rate and geographical location, which has spawned a series of running fitness applications, leading to the national running wave and promoting the rapid development of the sports industry. Based on the long short-term memory cyclic neural network, this paper processes, identifies, and analyzes the motion data collected by wearable devices. Through massive data training, a set of accurate auxiliary models of outdoor sports is obtained to help optimize and improve the effect of outdoor sports. The results show that the method proposed in this paper has a higher degree of sports action and feature recognition and can better assist in the completion of outdoor sports.
基于可穿戴设备的户外运动数据采集与特征分析方法
近年来,随着智能手机和可穿戴智能设备的快速普及,获取大量与人心率、地理位置相关的人体运动数据不再困难,催生了一系列跑步健身应用,带动了全民跑步浪潮,推动了体育产业的快速发展。基于长短期记忆循环神经网络,对可穿戴设备采集的运动数据进行处理、识别和分析。通过海量数据训练,获得一套准确的户外运动辅助模型,帮助优化和提高户外运动效果。结果表明,本文提出的方法具有较高的运动动作度和特征识别度,能够更好地辅助户外运动的完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信