{"title":"Hashtag Recommendation Based on Topic Enhanced Embedding, Tweet Entity Data and Learning to Rank","authors":"Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Xiaomo Liu, Rui Fang","doi":"10.1145/2983323.2983915","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach of recommending hashtags for tweets. It uses Learning to Rank algorithm to incorporate features built from topic enhanced word embeddings, tweet entity data, hashtag frequency, hashtag temporal data and tweet URL domain information. The experiments using millions of tweets and hashtags show that the proposed approach outperforms the three baseline methods -- the LDA topic, the tf.idf based and the general word embedding approaches.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
In this paper, we present a new approach of recommending hashtags for tweets. It uses Learning to Rank algorithm to incorporate features built from topic enhanced word embeddings, tweet entity data, hashtag frequency, hashtag temporal data and tweet URL domain information. The experiments using millions of tweets and hashtags show that the proposed approach outperforms the three baseline methods -- the LDA topic, the tf.idf based and the general word embedding approaches.