Sparsity-based direction of arrival estimation in the presence of gain/phase uncertainty

Fatemeh Afkhaminia, M. Azghani
{"title":"Sparsity-based direction of arrival estimation in the presence of gain/phase uncertainty","authors":"Fatemeh Afkhaminia, M. Azghani","doi":"10.23919/EUSIPCO.2017.8081684","DOIUrl":null,"url":null,"abstract":"Estimating the direction of arrival (DOA) in sensor arrays is a crucial task in array signal processing systems. This task becomes more difficult when the sensors have gain/phase uncertainty. We have addressed this issue by modeling the problem as a combination of two sparse components, the DOA vector and the gain/phase uncertainty vector. Therefore, a sparse decomposition technique is suggested to jointly recover the DOAs and the sensors with gain/phase uncertainty. The simulation results confirm that the suggested method offers very good performance in different scenarios and is superior to its counterparts.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Estimating the direction of arrival (DOA) in sensor arrays is a crucial task in array signal processing systems. This task becomes more difficult when the sensors have gain/phase uncertainty. We have addressed this issue by modeling the problem as a combination of two sparse components, the DOA vector and the gain/phase uncertainty vector. Therefore, a sparse decomposition technique is suggested to jointly recover the DOAs and the sensors with gain/phase uncertainty. The simulation results confirm that the suggested method offers very good performance in different scenarios and is superior to its counterparts.
存在增益/相位不确定性时基于稀疏性的到达方向估计
传感器阵列的到达方向估计是阵列信号处理系统中的一项关键任务。当传感器具有增益/相位不确定性时,这项任务变得更加困难。我们通过将问题建模为两个稀疏分量的组合来解决这个问题,即DOA矢量和增益/相位不确定性矢量。因此,提出了一种稀疏分解技术来联合恢复doa和具有增益/相位不确定性的传感器。仿真结果表明,该方法在不同场景下均能提供良好的性能,优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信