Efficient Preparation of Cyclic Quantum States

Fereshte Mozafari, Yuxiang Yang, G. Micheli
{"title":"Efficient Preparation of Cyclic Quantum States","authors":"Fereshte Mozafari, Yuxiang Yang, G. Micheli","doi":"10.1109/asp-dac52403.2022.9712522","DOIUrl":null,"url":null,"abstract":"Universal quantum algorithms that prepare arbitrary n-qubit quantum states require ${O\\left(2^{n}\\right)}$ gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum states that are invariant under permutations, e.g. Dicke states, have intriguing properties. In this paper, we consider states invariant under cyclic permutations, which we call cyclic states. We present a quantum algorithm that deterministically prepares cyclic states with gate complexity ${O\\left(n\\right)}$ without requiring any ancillary qubit. Through both analytical and numerical analyses, we show that our algorithm is more efficient than existing ones.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Universal quantum algorithms that prepare arbitrary n-qubit quantum states require ${O\left(2^{n}\right)}$ gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum states that are invariant under permutations, e.g. Dicke states, have intriguing properties. In this paper, we consider states invariant under cyclic permutations, which we call cyclic states. We present a quantum algorithm that deterministically prepares cyclic states with gate complexity ${O\left(n\right)}$ without requiring any ancillary qubit. Through both analytical and numerical analyses, we show that our algorithm is more efficient than existing ones.
循环量子态的高效制备
制备任意n量子位量子态的通用量子算法需要${O\左(2^{n}\右)}$门复杂度。通过根据手头的任务考虑特定的量子态族,可以降低复杂性。特别是,在排列下不变的多部量子态,例如Dicke态,具有有趣的性质。本文考虑循环置换下的状态不变,称之为循环态。我们提出了一种量子算法,它在不需要任何辅助量子比特的情况下,确定性地准备具有门复杂度${O\left(n\right)}$的循环状态。通过解析和数值分析,我们证明了我们的算法比现有的算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信