A two-stage clustering technique for automatic biaxial gating of flow cytometry data

M. Pouyan, V. Jindal, J. Birjandtalab, M. Nourani
{"title":"A two-stage clustering technique for automatic biaxial gating of flow cytometry data","authors":"M. Pouyan, V. Jindal, J. Birjandtalab, M. Nourani","doi":"10.1109/BIBM.2015.7359736","DOIUrl":null,"url":null,"abstract":"Measurement of various markers of single cells using flow cytometry has several biological applications. These applications include improving our understanding of behavior of cellular systems, identifying rare cell populations and personalized medication. A common critical issue in the existing methods is approximation of the number of cellular populations which heavily affects the accuracy of results. In this work, we propose a novel technique to estimate the number of dominant subtypes and identify them in flow cytometry datasets. Our experimentation on 42 flow cytometry datasets indicates high performance and accurate clustering (F-measure > 91%) in identifying the main cellular populations.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Measurement of various markers of single cells using flow cytometry has several biological applications. These applications include improving our understanding of behavior of cellular systems, identifying rare cell populations and personalized medication. A common critical issue in the existing methods is approximation of the number of cellular populations which heavily affects the accuracy of results. In this work, we propose a novel technique to estimate the number of dominant subtypes and identify them in flow cytometry datasets. Our experimentation on 42 flow cytometry datasets indicates high performance and accurate clustering (F-measure > 91%) in identifying the main cellular populations.
流式细胞术数据自动双轴门控的两阶段聚类技术
使用流式细胞术测量单细胞的各种标记物具有几种生物学应用。这些应用包括提高我们对细胞系统行为的理解,识别稀有细胞群和个性化药物。现有方法中一个常见的关键问题是细胞种群数量的近似,这严重影响了结果的准确性。在这项工作中,我们提出了一种新的技术来估计显性亚型的数量,并在流式细胞术数据集中识别它们。我们在42个流式细胞仪数据集上的实验表明,在识别主要细胞群方面具有高性能和准确的聚类(F-measure > 91%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信