A Context-Based State Estimation Technique for Hybrid Systems

Sarjoun Skaff, A. Rizzi, H. Choset, Pei-Chun Lin
{"title":"A Context-Based State Estimation Technique for Hybrid Systems","authors":"Sarjoun Skaff, A. Rizzi, H. Choset, Pei-Chun Lin","doi":"10.1109/ROBOT.2005.1570720","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to robust state estimation for mobile robots with intermittent dynamics. The approach consists of identifying the robot’s mode of operation by classifying the output of onboard sensors into mode-specific contexts. The underlying technique seeks to efficiently use available sensor information to enable accurate, high-bandwidth mode identification. Context classification is combined with multiple-model filtering in order to significantly improve the accuracy of state estimates for hybrid systems. This approach is validated in simulation and shown experimentally to produce accurate estimates on a jogging robot using low-cost sensors.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"194 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper proposes an approach to robust state estimation for mobile robots with intermittent dynamics. The approach consists of identifying the robot’s mode of operation by classifying the output of onboard sensors into mode-specific contexts. The underlying technique seeks to efficiently use available sensor information to enable accurate, high-bandwidth mode identification. Context classification is combined with multiple-model filtering in order to significantly improve the accuracy of state estimates for hybrid systems. This approach is validated in simulation and shown experimentally to produce accurate estimates on a jogging robot using low-cost sensors.
基于上下文的混合系统状态估计技术
提出了一种具有间歇动力学的移动机器人鲁棒状态估计方法。该方法包括通过将车载传感器的输出分类到特定模式的环境中来识别机器人的操作模式。基础技术旨在有效地利用可用的传感器信息,以实现准确的高带宽模式识别。将上下文分类与多模型滤波相结合,显著提高了混合系统状态估计的精度。该方法在仿真中得到了验证,并在实验中得到了使用低成本传感器的慢跑机器人的准确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信