A segmentation and object extraction algorithm with linear memory and time constraints

R. S. Anbalagan, G. Hu, Anil K. Jain
{"title":"A segmentation and object extraction algorithm with linear memory and time constraints","authors":"R. S. Anbalagan, G. Hu, Anil K. Jain","doi":"10.1109/ICPR.1988.28302","DOIUrl":null,"url":null,"abstract":"An experimental segmentation and object extraction algorithm is described. The system was developed for medical image processing with the primary application being DNA (deoxyribonucleic acid) sequencing. A typical DNA sequencing can involve processing the image of an autodiagram of size 14*17 inches resulting in a 2048*8600 digitized image under the specified spatial resolutions. The digitized image is too big to manage, even using super-minicomputers such as DEC VAX 11/780, and to perform any amount of classical image processing. Therefore, an elegant hardware and software design is necessary to deal with the large image and to complete the image-understanding task in an efficient manner. This work focuses on the image-processing aspects of the system and describes the run-length image representation, a link list data structure, a heuristic connected component analysis algorithm based on the data structure, a primitive object segmentation algorithm, and feature extraction.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An experimental segmentation and object extraction algorithm is described. The system was developed for medical image processing with the primary application being DNA (deoxyribonucleic acid) sequencing. A typical DNA sequencing can involve processing the image of an autodiagram of size 14*17 inches resulting in a 2048*8600 digitized image under the specified spatial resolutions. The digitized image is too big to manage, even using super-minicomputers such as DEC VAX 11/780, and to perform any amount of classical image processing. Therefore, an elegant hardware and software design is necessary to deal with the large image and to complete the image-understanding task in an efficient manner. This work focuses on the image-processing aspects of the system and describes the run-length image representation, a link list data structure, a heuristic connected component analysis algorithm based on the data structure, a primitive object segmentation algorithm, and feature extraction.<>
一种具有线性记忆和时间约束的分割和目标提取算法
描述了一种实验分割和目标提取算法。该系统是为医学图像处理开发的,主要应用是DNA(脱氧核糖核酸)测序。典型的DNA测序可能涉及处理尺寸为14*17英寸的自动图图像,从而在指定的空间分辨率下生成2048*8600的数字化图像。数字化图像太大,即使使用DEC VAX 11/780这样的超小型计算机也无法管理,并且无法执行任何数量的经典图像处理。因此,为了处理大图像,高效地完成图像理解任务,需要一个优雅的硬件和软件设计。这项工作侧重于系统的图像处理方面,并描述了图像的行程长度表示、链表数据结构、基于数据结构的启发式连接成分分析算法、原始对象分割算法和特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信