Recognizing military vehicles in social media images using deep learning

Tuomo Hiippala
{"title":"Recognizing military vehicles in social media images using deep learning","authors":"Tuomo Hiippala","doi":"10.1109/ISI.2017.8004875","DOIUrl":null,"url":null,"abstract":"This paper presents a system that uses machine learning to recognize military vehicles in social media images. To do so, the system draws on recent advances in applying deep neural networks to computer vision tasks, while also making extensive use of openly available libraries, models and data. Training a vehicle recognition system over three classes, the paper reports on two experiments that use different architectures and strategies to overcome the challenges of working with limited training data: data augmentation and transfer learning. The results show that transfer learning outperforms data augmentation, achieving an average accuracy of 95.18% using 10-fold cross-validation, while also generalizing well on a separate testing set consisting of social media content.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a system that uses machine learning to recognize military vehicles in social media images. To do so, the system draws on recent advances in applying deep neural networks to computer vision tasks, while also making extensive use of openly available libraries, models and data. Training a vehicle recognition system over three classes, the paper reports on two experiments that use different architectures and strategies to overcome the challenges of working with limited training data: data augmentation and transfer learning. The results show that transfer learning outperforms data augmentation, achieving an average accuracy of 95.18% using 10-fold cross-validation, while also generalizing well on a separate testing set consisting of social media content.
利用深度学习在社交媒体图像中识别军用车辆
本文介绍了一个使用机器学习识别社交媒体图像中的军用车辆的系统。为此,该系统借鉴了将深度神经网络应用于计算机视觉任务的最新进展,同时也广泛使用了公开可用的库、模型和数据。通过三个类训练车辆识别系统,本文报告了两个实验,使用不同的架构和策略来克服使用有限训练数据的挑战:数据增强和迁移学习。结果表明,迁移学习优于数据增强,使用10倍交叉验证达到95.18%的平均准确率,同时在由社交媒体内容组成的单独测试集上也能很好地泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信