Image Decomposition via Generalized Morphological Component Analysis and Split Bregman Algorithm

Bo Li, J. Yan, Xiaowei Xu
{"title":"Image Decomposition via Generalized Morphological Component Analysis and Split Bregman Algorithm","authors":"Bo Li, J. Yan, Xiaowei Xu","doi":"10.1109/ICDH.2012.18","DOIUrl":null,"url":null,"abstract":"This paper describes a novel image decomposition algorithm based on sparse representation and split bregman algorithm. This algorithm is a direct extension of morphological component analysis(MCA), which is the typical sparse representation-based image decomposition method designed for the separation of linearly combined texture and cartoon layers in a given image. But when dealing with problems with additional regularization of constraint, such as extra image structure information(e.g. BV), the convergence rate of traditional MCA is slow. To resolve this problem, this article propose a generalized morphological component analysis(GMCA) method. The GMCA algorithm introduce multiple regularization to the traditional MCA, and build a fast algorithm via Split Bregman and proximal method. Experimental results show that this algorithm achieved better results via giving specific constraints on different component and get faster convergence rate.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a novel image decomposition algorithm based on sparse representation and split bregman algorithm. This algorithm is a direct extension of morphological component analysis(MCA), which is the typical sparse representation-based image decomposition method designed for the separation of linearly combined texture and cartoon layers in a given image. But when dealing with problems with additional regularization of constraint, such as extra image structure information(e.g. BV), the convergence rate of traditional MCA is slow. To resolve this problem, this article propose a generalized morphological component analysis(GMCA) method. The GMCA algorithm introduce multiple regularization to the traditional MCA, and build a fast algorithm via Split Bregman and proximal method. Experimental results show that this algorithm achieved better results via giving specific constraints on different component and get faster convergence rate.
基于广义形态分量分析和分裂Bregman算法的图像分解
提出了一种基于稀疏表示和分裂bregman算法的图像分解算法。该算法是形态学成分分析(MCA)的直接扩展,MCA是一种典型的基于稀疏表示的图像分解方法,用于分离给定图像中线性组合的纹理层和卡通层。但是当处理带有额外正则化约束的问题时,例如额外的图像结构信息(例如:BV),传统MCA的收敛速度较慢。为了解决这一问题,本文提出了广义形态成分分析(GMCA)方法。GMCA算法在传统MCA的基础上引入了多重正则化,并通过Split Bregman和近端方法构建了一种快速算法。实验结果表明,该算法通过对不同分量进行特定约束,取得了较好的收敛效果,收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信