GPS/GLONASS Data Fusion and Outlier Elimination to Improve the Position Accuracy of Receiver

Tan Truong Ngoc, A. Khenchaf, F. Comblet, Pierre Franck, Jean-Marc Champeyroux, O. Reichert
{"title":"GPS/GLONASS Data Fusion and Outlier Elimination to Improve the Position Accuracy of Receiver","authors":"Tan Truong Ngoc, A. Khenchaf, F. Comblet, Pierre Franck, Jean-Marc Champeyroux, O. Reichert","doi":"10.1109/CAMA47423.2019.8959694","DOIUrl":null,"url":null,"abstract":"To improve the accuracy of receiver's positios, Global Navigation Satellite System (GNSS) brings more signals and more satellites. This paper presents data fusion from multiple satellite constellations. Indeed, multiple satellite failures impact the determination of the user position and should be considered. For this purpose, the present paper provides a robust estimation to detect and exclude multi-faults. This paper presents a robust MM class estimator for the GNSS positioning using data from the GLONASS and combination with GPS data. The results are improved by up to 70.96% with the position fusion and the robust estimation algorithm compared with using GPS data only.","PeriodicalId":170627,"journal":{"name":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"10 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA47423.2019.8959694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To improve the accuracy of receiver's positios, Global Navigation Satellite System (GNSS) brings more signals and more satellites. This paper presents data fusion from multiple satellite constellations. Indeed, multiple satellite failures impact the determination of the user position and should be considered. For this purpose, the present paper provides a robust estimation to detect and exclude multi-faults. This paper presents a robust MM class estimator for the GNSS positioning using data from the GLONASS and combination with GPS data. The results are improved by up to 70.96% with the position fusion and the robust estimation algorithm compared with using GPS data only.
GPS/GLONASS数据融合与异常值消除提高接收机定位精度
为了提高接收机的定位精度,全球卫星导航系统(GNSS)带来了更多的信号和更多的卫星。本文介绍了多卫星星座的数据融合。的确,多颗卫星故障会影响用户位置的确定,应予以考虑。为此,本文提出了一种检测和排除多故障的鲁棒估计方法。本文利用GLONASS数据,结合GPS数据,提出了一种鲁棒的MM类估计器。与仅使用GPS数据相比,采用位置融合和鲁棒估计算法的结果提高了70.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信