{"title":"Manifold-Based Supervised Feature Extraction and Face Recognition","authors":"Caikou Chen, Cao Li, Jing-yu Yang","doi":"10.1109/CCPR.2008.16","DOIUrl":null,"url":null,"abstract":"Unsupervised discriminant projection (UDP) has a good effect on face recognition problem, but it has not made full use of the training samples' class information that is useful for classification. Linear discrimination analysis (LDA) is a classical face recognition method. It is effective for classification, but it can not discover the samples' nonlinear structure. This paper develops a manifold-based supervised feature extraction method, which combines the manifold learning method UDP and the class-label information. It seeks to find a projection that maximizes the nonlocal scatter, while minimizes the local scatter and the within-class scatter. This method not only finds the intrinsic low-dimensional nonlinear representation of original high-dimensional data, but also is effective for classification. The experimental results on Yale face image database show that the proposed method outperforms the current UDP and LDA.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised discriminant projection (UDP) has a good effect on face recognition problem, but it has not made full use of the training samples' class information that is useful for classification. Linear discrimination analysis (LDA) is a classical face recognition method. It is effective for classification, but it can not discover the samples' nonlinear structure. This paper develops a manifold-based supervised feature extraction method, which combines the manifold learning method UDP and the class-label information. It seeks to find a projection that maximizes the nonlocal scatter, while minimizes the local scatter and the within-class scatter. This method not only finds the intrinsic low-dimensional nonlinear representation of original high-dimensional data, but also is effective for classification. The experimental results on Yale face image database show that the proposed method outperforms the current UDP and LDA.