{"title":"Object detection algorithm based on improved Yolov5","authors":"Hua Wang, Jiang Yin, Shuang Zhang, Daishuang Hou","doi":"10.1117/12.2672682","DOIUrl":null,"url":null,"abstract":"A more accurate target detection model is proposed in this research based on Yolov5 target detection algorithm, aiming at its low regression accuracy to the target boundary box. Firstly, coordinate attention mechanism is added to the backbone network to improve the position information of the perceived target in the underlying feature information. Secondly, GIOU is replaced with EIOU to improve the convergence speed. Finally, the feature extraction network is replaced with BiFPN to more efficiently fuse different feature information. Using PASCAL VOC 2007 and 2012 datasets and redividing the training set and verification set, this algorithm is better than the original algorithm mAP@0.5 increased by 2.9%, mAP@0.5:0.95 increased by 1.4%.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A more accurate target detection model is proposed in this research based on Yolov5 target detection algorithm, aiming at its low regression accuracy to the target boundary box. Firstly, coordinate attention mechanism is added to the backbone network to improve the position information of the perceived target in the underlying feature information. Secondly, GIOU is replaced with EIOU to improve the convergence speed. Finally, the feature extraction network is replaced with BiFPN to more efficiently fuse different feature information. Using PASCAL VOC 2007 and 2012 datasets and redividing the training set and verification set, this algorithm is better than the original algorithm mAP@0.5 increased by 2.9%, mAP@0.5:0.95 increased by 1.4%.