{"title":"Efficient computation of the Levenberg-Marquardt algorithm for feedforward networks with linear outputs","authors":"P. Chazal, M. McDonnell","doi":"10.1109/IJCNN.2016.7727182","DOIUrl":null,"url":null,"abstract":"An efficient algorithm for the calculation of the approximate Hessian matrix for the Levenberg-Marquardt (LM) optimization algorithm for training a single-hidden-layer feedforward network with linear outputs is presented. The algorithm avoids explicit calculation of the Jacobian matrix and computes the gradient vector and approximate Hessian matrix directly. It requires approximately 1/N the floating point operations of other published algorithms, where N is the number of network outputs. The required memory for the algorithm is also less than 1/N of the memory required for algorithms explicitly computing the Jacobian matrix. We applied our algorithm to two large-scale classification problems - the MNIST and the Forest Cover Type databases. Our results were within 0.5% of the best performance of systems using pixel values as inputs to a feedforward network for the MNIST database. Our results were achieved with a much smaller network than other published results. We achieved state-of-the-art performance for the Forest Cover Type database.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"632 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An efficient algorithm for the calculation of the approximate Hessian matrix for the Levenberg-Marquardt (LM) optimization algorithm for training a single-hidden-layer feedforward network with linear outputs is presented. The algorithm avoids explicit calculation of the Jacobian matrix and computes the gradient vector and approximate Hessian matrix directly. It requires approximately 1/N the floating point operations of other published algorithms, where N is the number of network outputs. The required memory for the algorithm is also less than 1/N of the memory required for algorithms explicitly computing the Jacobian matrix. We applied our algorithm to two large-scale classification problems - the MNIST and the Forest Cover Type databases. Our results were within 0.5% of the best performance of systems using pixel values as inputs to a feedforward network for the MNIST database. Our results were achieved with a much smaller network than other published results. We achieved state-of-the-art performance for the Forest Cover Type database.