A sliding cost function algorithm for blind deconvolution

Russell H Lambert, C. Nikias
{"title":"A sliding cost function algorithm for blind deconvolution","authors":"Russell H Lambert, C. Nikias","doi":"10.1109/ACSSC.1995.540536","DOIUrl":null,"url":null,"abstract":"A new method for blind equalization is proposed which changes the cost function of the equalizer as the convergence proceeds. Motivation for this idea is given by tests of the new \"uniform optimum\" O/sub /spl infin///sup 2/ cost function for blind equalization proposed in Satorius and Mulligan (1993), comparing it to the more familiar O/sub 4//sup 2/ Godard-like cost. The new cost achieves better asymptotic performance than O/sub 4//sup 2/ for communications data, but has a zero tracking ability measure, this being an example of the tracking/accuracy compromise of adaptive algorithms. This suggests the use of a sliding cost function algorithm which monitors the convergence state of the equalizer. The sliding cost function algorithm is developed as a \"maximum a posteriori (MAP) estimate of the blind gradient\" method for blind equalization which assumes the the data fit a generalized Gaussian distribution model. The model parameters are updated at each iteration, and the algorithm adapts its cost function so as to have good tracking ability while converging, and optimal steady state performance at convergence.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new method for blind equalization is proposed which changes the cost function of the equalizer as the convergence proceeds. Motivation for this idea is given by tests of the new "uniform optimum" O/sub /spl infin///sup 2/ cost function for blind equalization proposed in Satorius and Mulligan (1993), comparing it to the more familiar O/sub 4//sup 2/ Godard-like cost. The new cost achieves better asymptotic performance than O/sub 4//sup 2/ for communications data, but has a zero tracking ability measure, this being an example of the tracking/accuracy compromise of adaptive algorithms. This suggests the use of a sliding cost function algorithm which monitors the convergence state of the equalizer. The sliding cost function algorithm is developed as a "maximum a posteriori (MAP) estimate of the blind gradient" method for blind equalization which assumes the the data fit a generalized Gaussian distribution model. The model parameters are updated at each iteration, and the algorithm adapts its cost function so as to have good tracking ability while converging, and optimal steady state performance at convergence.
一种滑动代价函数盲反卷积算法
提出了一种新的盲均衡方法,该方法在收敛过程中改变均衡器的代价函数。对Satorius和Mulligan(1993)提出的盲均衡的新“均匀最优”O/sub /spl in// sup 2/成本函数的测试给出了这一想法的动机,并将其与更熟悉的O/sub //sup 2/ Godard-like成本进行了比较。对于通信数据,新成本比O/sub 4//sup 2/实现了更好的渐近性能,但具有零跟踪能力度量,这是自适应算法跟踪/精度妥协的一个例子。这建议使用滑动代价函数算法来监控均衡器的收敛状态。滑动代价函数算法是一种假设数据符合广义高斯分布模型的盲均衡“盲梯度的最大后验估计”方法。每次迭代更新模型参数,算法调整代价函数,使收敛时具有良好的跟踪能力,收敛时具有最优的稳态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信