{"title":"Accelerating locality preserving nonnegative matrix factorization","authors":"Guanhong Yao, Deng Cai","doi":"10.1145/2396761.2398618","DOIUrl":null,"url":null,"abstract":"Matrix factorization techniques have been frequently applied in information retrieval, computer vision and pattern recognition. Among them, Non-negative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in the human brain. Locality Preserving Non-negative Matrix Factorization (LPNMF) is a recently proposed graph-based NMF extension which tries to preserves the intrinsic geometric structure of the data. Compared with the original NMF, LPNMF has more discriminating power on data representa- tion thanks to its geometrical interpretation and outstanding ability to discover the hidden topics. However, the computa- tional complexity of LPNMF is O(n3), where n is the number of samples. In this paper, we propose a novel approach called Accelerated LPNMF (A-LPNMF) to solve the com- putational issue of LPNMF. Specifically, A-LPNMF selects p (p j n) landmark points from the data and represents all the samples as the sparse linear combination of these landmarks. The non-negative factors which incorporates the geometric structure can then be efficiently computed. Experimental results on the real data sets demonstrate the effectiveness and efficiency of our proposed method.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"160 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Matrix factorization techniques have been frequently applied in information retrieval, computer vision and pattern recognition. Among them, Non-negative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in the human brain. Locality Preserving Non-negative Matrix Factorization (LPNMF) is a recently proposed graph-based NMF extension which tries to preserves the intrinsic geometric structure of the data. Compared with the original NMF, LPNMF has more discriminating power on data representa- tion thanks to its geometrical interpretation and outstanding ability to discover the hidden topics. However, the computa- tional complexity of LPNMF is O(n3), where n is the number of samples. In this paper, we propose a novel approach called Accelerated LPNMF (A-LPNMF) to solve the com- putational issue of LPNMF. Specifically, A-LPNMF selects p (p j n) landmark points from the data and represents all the samples as the sparse linear combination of these landmarks. The non-negative factors which incorporates the geometric structure can then be efficiently computed. Experimental results on the real data sets demonstrate the effectiveness and efficiency of our proposed method.