Hier-3D: A Hierarchical Physical Design Methodology for Face-to-Face-Bonded 3D ICs

Anthony Agnesina, Moritz Brunion, A. Ortiz, F. Catthoor, D. Milojevic, M. Komalan, Matheus A. Cavalcante, Samuel Riedel, L. Benini, S. Lim
{"title":"Hier-3D: A Hierarchical Physical Design Methodology for Face-to-Face-Bonded 3D ICs","authors":"Anthony Agnesina, Moritz Brunion, A. Ortiz, F. Catthoor, D. Milojevic, M. Komalan, Matheus A. Cavalcante, Samuel Riedel, L. Benini, S. Lim","doi":"10.1145/3531437.3539702","DOIUrl":null,"url":null,"abstract":"Hierarchical very-large-scale integration (VLSI) flows are an understudied yet critical approach to achieving design closure at giga-scale complexity and gigahertz frequency targets. This paper proposes a novel hierarchical physical design flow enabling the building of high-density and commercial-quality two-tier face-to-face-bonded hierarchical 3D ICs. We significantly reduce the associated manufacturing cost compared to existing 3D implementation flows and, for the first time, achieve cost competitiveness against the 2D reference in large modern designs. Experimental results on complex industrial and open manycore processors demonstrate in two advanced nodes that the proposed flow provides major power, performance, and area/cost (PPAC) improvements of 1.2 to 2.2 × compared with 2D, where all metrics are improved simultaneously, including up to power savings.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hierarchical very-large-scale integration (VLSI) flows are an understudied yet critical approach to achieving design closure at giga-scale complexity and gigahertz frequency targets. This paper proposes a novel hierarchical physical design flow enabling the building of high-density and commercial-quality two-tier face-to-face-bonded hierarchical 3D ICs. We significantly reduce the associated manufacturing cost compared to existing 3D implementation flows and, for the first time, achieve cost competitiveness against the 2D reference in large modern designs. Experimental results on complex industrial and open manycore processors demonstrate in two advanced nodes that the proposed flow provides major power, performance, and area/cost (PPAC) improvements of 1.2 to 2.2 × compared with 2D, where all metrics are improved simultaneously, including up to power savings.
Hier-3D:面对面键合3D集成电路的分层物理设计方法
分层超大规模集成电路(VLSI)流程是一种尚未得到充分研究的关键方法,可以实现千兆级复杂性和千兆赫兹频率目标的设计闭合。本文提出了一种新的分层物理设计流程,可以构建高密度和商业质量的两层面对面键合分层3D集成电路。与现有的3D实现流程相比,我们显著降低了相关的制造成本,并且首次在大型现代设计中实现了与2D参考的成本竞争力。在复杂的工业和开放多核处理器上的实验结果表明,在两个高级节点上,与2D相比,所提出的流程提供了1.2到2.2倍的主要功率,性能和面积/成本(PPAC)改进,其中所有指标同时得到改进,包括功耗节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信