Shape Representation of Polynomial Curves with Adjustable Interpolation Points

Xuli Han
{"title":"Shape Representation of Polynomial Curves with Adjustable Interpolation Points","authors":"Xuli Han","doi":"10.1109/SMI.2010.30","DOIUrl":null,"url":null,"abstract":"Piecewise cubic and quartic polynomial curves with adjustable interpolation points are presented in this paper. The adjustable interpolation points are represented by local shape parameters and the given control points. Based on the choice of endpoint tangents of curve segments, piecewise cubic $C^1$, piecewise cubic $G^2$ and piecewise quartic $C^2$ curves are given. The representations of the piecewise cubic $C^1$ curves and the piecewise quartic $C^2$ curves are integrated representations of approximating and interpolating curves. By changing the values of the local shape parameters, local approximating curves and local interpolating curves can be generated respectively.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piecewise cubic and quartic polynomial curves with adjustable interpolation points are presented in this paper. The adjustable interpolation points are represented by local shape parameters and the given control points. Based on the choice of endpoint tangents of curve segments, piecewise cubic $C^1$, piecewise cubic $G^2$ and piecewise quartic $C^2$ curves are given. The representations of the piecewise cubic $C^1$ curves and the piecewise quartic $C^2$ curves are integrated representations of approximating and interpolating curves. By changing the values of the local shape parameters, local approximating curves and local interpolating curves can be generated respectively.
具有可调插值点的多项式曲线的形状表示
提出了插值点可调的分段三次和四次多项式曲线。可调插值点由局部形状参数和给定控制点表示。根据曲线段端点切线的选择,给出了分段三次曲线C^1$、分段三次曲线G^2$和分段四次曲线C^2$。分段三次C^1曲线和分段四次C^2曲线的表示是近似曲线和插值曲线的综合表示。通过改变局部形状参数的值,可以分别生成局部逼近曲线和局部插值曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信