Analyzing Future Nodes in a Knowledge Network

Sukhwan Jung, T. Lai, Aviv Segev
{"title":"Analyzing Future Nodes in a Knowledge Network","authors":"Sukhwan Jung, T. Lai, Aviv Segev","doi":"10.1109/BigDataCongress.2016.57","DOIUrl":null,"url":null,"abstract":"The paper proposes new methods for knowledge prediction using network analytics and introduces pEgonet, sub-networks within knowledge networks consisting of to-beneighbors of new knowledge. Preliminary results show that it is feasible to predict how future knowledge is added in the knowledge network by utilizing basic properties of pEgonet. The paper presents initial work which will be expanded to derive a method to predict labelled future knowledge, with its impact and structures.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper proposes new methods for knowledge prediction using network analytics and introduces pEgonet, sub-networks within knowledge networks consisting of to-beneighbors of new knowledge. Preliminary results show that it is feasible to predict how future knowledge is added in the knowledge network by utilizing basic properties of pEgonet. The paper presents initial work which will be expanded to derive a method to predict labelled future knowledge, with its impact and structures.
分析知识网络中的未来节点
本文提出了利用网络分析进行知识预测的新方法,并引入了pEgonet,即由新知识的邻域组成的知识网络中的子网络。初步结果表明,利用pEgonet的基本特性预测未来知识如何添加到知识网络中是可行的。本文提出了最初的工作,将扩展到推导一种方法来预测标记的未来知识,其影响和结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信