{"title":"Performance of a high-speed switched reluctance starter/generator system using electronic position sensing","authors":"S. R. Jones, B. Drager","doi":"10.1109/IAS.1995.530308","DOIUrl":null,"url":null,"abstract":"A switched reluctance machine-based system, whether a motor drive or a starter/generator, requires the rotor position to be determined to commutate at the correct instants. This paper compares the performance of a high-speed switched reluctance starter/generator (SR S/G) system when operating with a resolver to the performance when operating resolverless, or sensorless, using an electronic position sensing subsystem for rotor position estimation. A brief overview of the SR S/G system is given, followed by the approach for sensorless system operation. Test results are given, and system efficiency is compared, for both approaches when operating both as a starter and as a generator. Minimal difference is seen in system efficiency, with peaks at over 75 percent for start-mode and at over 79 percent for generate mode, for both resolver-based and sensorless operation.","PeriodicalId":117576,"journal":{"name":"IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1995.530308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A switched reluctance machine-based system, whether a motor drive or a starter/generator, requires the rotor position to be determined to commutate at the correct instants. This paper compares the performance of a high-speed switched reluctance starter/generator (SR S/G) system when operating with a resolver to the performance when operating resolverless, or sensorless, using an electronic position sensing subsystem for rotor position estimation. A brief overview of the SR S/G system is given, followed by the approach for sensorless system operation. Test results are given, and system efficiency is compared, for both approaches when operating both as a starter and as a generator. Minimal difference is seen in system efficiency, with peaks at over 75 percent for start-mode and at over 79 percent for generate mode, for both resolver-based and sensorless operation.