Language Identification using Warping and the Shifted Delta Cepstrum

Felicity Allen, E. Ambikairajah, J. Epps
{"title":"Language Identification using Warping and the Shifted Delta Cepstrum","authors":"Felicity Allen, E. Ambikairajah, J. Epps","doi":"10.1109/MMSP.2005.248554","DOIUrl":null,"url":null,"abstract":"This paper proposes the novel use of feature warping for automatic language identification, in combination with the shifted delta cepstrum (SDC) and perceptual linear predictive coefficients in a Gaussian mixture model (GMM) based system. Experimental results on various configurations of front-end techniques reported herein demonstrate that, besides providing robustness against channel mismatch and noise as found in existing literature, feature warping is useful more generally as a technique for pre-mapping data for improved compatibility with a GMM back-end. The configuration reported in this paper provides a language identification performance of 76.4% using the OGI/NIST database, a 46.5% relative reduction in error rate when compared with a benchmark system employing Mel frequency cepstral coefficients and the SDC","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

This paper proposes the novel use of feature warping for automatic language identification, in combination with the shifted delta cepstrum (SDC) and perceptual linear predictive coefficients in a Gaussian mixture model (GMM) based system. Experimental results on various configurations of front-end techniques reported herein demonstrate that, besides providing robustness against channel mismatch and noise as found in existing literature, feature warping is useful more generally as a technique for pre-mapping data for improved compatibility with a GMM back-end. The configuration reported in this paper provides a language identification performance of 76.4% using the OGI/NIST database, a 46.5% relative reduction in error rate when compared with a benchmark system employing Mel frequency cepstral coefficients and the SDC
使用扭曲和移位倒谱的语言识别
在基于高斯混合模型(GMM)的系统中,结合移位的δ倒谱(SDC)和感知线性预测系数,提出了将特征扭曲用于自动语言识别的新方法。本文报道的各种前端技术配置的实验结果表明,除了提供现有文献中发现的对通道不匹配和噪声的鲁棒性外,特征翘曲作为一种预映射数据的技术更有用,以提高与GMM后端的兼容性。本文报告的配置使用OGI/NIST数据库提供了76.4%的语言识别性能,与使用Mel频率倒谱系数和SDC的基准系统相比,错误率相对降低了46.5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信