Timothy Merrifield, Joseph Devietti, Jakob Eriksson
{"title":"High-performance determinism with total store order consistency","authors":"Timothy Merrifield, Joseph Devietti, Jakob Eriksson","doi":"10.1145/2741948.2741960","DOIUrl":null,"url":null,"abstract":"We present Consequence, a deterministic multi-threading library. Consequence achieves deterministic execution via store buffering and strict ordering of synchronization operations. To ensure high performance under a wide variety of conditions, the ordering of synch operations is based on a deterministic clock [25], and store buffering is implemented using version-controlled memory [23]. Recent work on deterministic concurrency [14, 19] has proposed relaxing the consistency model beyond total store order (TSO). Through novel optimizations, Consequence achieves the same or better performance on the Phoenix, PARSEC and SPLASH-2 benchmark suites, while retaining TSO memory consistency. Across 19 benchmark programs, Consequence incurs a worst-case slowdown of 3.9× vs. pthreads, with 14 out of 19 programs at or below 2.5×. We believe this performance improvement takes parallel programming one step closer to \"determinism by default\".","PeriodicalId":119291,"journal":{"name":"Proceedings of the Tenth European Conference on Computer Systems","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2741948.2741960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We present Consequence, a deterministic multi-threading library. Consequence achieves deterministic execution via store buffering and strict ordering of synchronization operations. To ensure high performance under a wide variety of conditions, the ordering of synch operations is based on a deterministic clock [25], and store buffering is implemented using version-controlled memory [23]. Recent work on deterministic concurrency [14, 19] has proposed relaxing the consistency model beyond total store order (TSO). Through novel optimizations, Consequence achieves the same or better performance on the Phoenix, PARSEC and SPLASH-2 benchmark suites, while retaining TSO memory consistency. Across 19 benchmark programs, Consequence incurs a worst-case slowdown of 3.9× vs. pthreads, with 14 out of 19 programs at or below 2.5×. We believe this performance improvement takes parallel programming one step closer to "determinism by default".