Compressive Sensing for Indoor Millimeter Wave Massive MIMO : (Invited Paper)

John Franklin, A. Cooper
{"title":"Compressive Sensing for Indoor Millimeter Wave Massive MIMO : (Invited Paper)","authors":"John Franklin, A. Cooper","doi":"10.1109/CISS.2019.8692928","DOIUrl":null,"url":null,"abstract":"Under sparse channel assumptions, channel state information for the massive MIMO uplink can be effectively estimated without sampling every antenna. Assuming a slow flat fading multipath channel, orthogonal pilot signals, and a uniform rectangular array, channel estimation is performed by leveraging sparsity in the spatial and pilot code domains to reconstruct the channel to all antennas. Results of sampling from 25 percent of a 32 by 64 element massive MIMO array during the uplink piloting phase are presented. The sum rate achieved by using compressed sensing and sparse recovery channel estimates exceeds that achieved with the least squares channel estimate for the same number of sampled antennas.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under sparse channel assumptions, channel state information for the massive MIMO uplink can be effectively estimated without sampling every antenna. Assuming a slow flat fading multipath channel, orthogonal pilot signals, and a uniform rectangular array, channel estimation is performed by leveraging sparsity in the spatial and pilot code domains to reconstruct the channel to all antennas. Results of sampling from 25 percent of a 32 by 64 element massive MIMO array during the uplink piloting phase are presented. The sum rate achieved by using compressed sensing and sparse recovery channel estimates exceeds that achieved with the least squares channel estimate for the same number of sampled antennas.
室内毫米波海量MIMO压缩感知研究(特邀论文)
在稀疏信道假设下,无需对每个天线采样即可有效估计海量MIMO上行链路的信道状态信息。假设有一个缓慢的平坦衰落多径信道、正交导频信号和均匀的矩形阵列,通过利用空间和导频码域的稀疏性来重建到所有天线的信道来进行信道估计。给出了在上行导频阶段对32 × 64元大规模MIMO阵列进行25%采样的结果。使用压缩感知和稀疏恢复信道估计获得的和速率超过了使用最小二乘信道估计获得的和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信