3D Convolutional Neural Network Based on Face Anti-spoofing

Junying Gan, Shanlu Li, Yikui Zhai, Chengyun Liu
{"title":"3D Convolutional Neural Network Based on Face Anti-spoofing","authors":"Junying Gan, Shanlu Li, Yikui Zhai, Chengyun Liu","doi":"10.1109/ICMIP.2017.9","DOIUrl":null,"url":null,"abstract":"Face anti-spoofing is very significant to the security of face recognition. Many existing literatures focus on the study of photo attack. For the video attack, however, the related research efforts are still insufficient. In this paper, instead of extracting features from a single image, features are learned from video frames. To realize face anti-spoofing, the spatiotemporal features of continuous video frames are extracted using 3D convolution neural network (CNN) from the short video frame level. Experimental results show that the two sets of face anti-spoofing public databases, Replay-Attack and CASIA, have achieved the HTER (Half Total Error Rate) of 0.04% and 10.65%, respectively, which is better than the state-of-the-art.","PeriodicalId":227455,"journal":{"name":"2017 2nd International Conference on Multimedia and Image Processing (ICMIP)","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Multimedia and Image Processing (ICMIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIP.2017.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Face anti-spoofing is very significant to the security of face recognition. Many existing literatures focus on the study of photo attack. For the video attack, however, the related research efforts are still insufficient. In this paper, instead of extracting features from a single image, features are learned from video frames. To realize face anti-spoofing, the spatiotemporal features of continuous video frames are extracted using 3D convolution neural network (CNN) from the short video frame level. Experimental results show that the two sets of face anti-spoofing public databases, Replay-Attack and CASIA, have achieved the HTER (Half Total Error Rate) of 0.04% and 10.65%, respectively, which is better than the state-of-the-art.
基于人脸抗欺骗的三维卷积神经网络
人脸防欺骗对人脸识别的安全性具有重要意义。现有的许多文献都集中在光攻击的研究上。然而,对于视频攻击,相关的研究力度仍然不足。本文不是从单个图像中提取特征,而是从视频帧中学习特征。为了实现人脸防欺骗,从短视频帧级开始,利用三维卷积神经网络(CNN)提取连续视频帧的时空特征。实验结果表明,两组人脸防欺骗公共数据库Replay-Attack和CASIA分别实现了0.04%和10.65%的HTER(半总错误率),优于目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信