Water quality identification based on remote sensing image in industrial waste disposal using convolutional neural networks

Prasetya Widiharso, Wahyu Tri Handoko, A. Wibawa, A. N. Handayani, M. Teng
{"title":"Water quality identification based on remote sensing image in industrial waste disposal using convolutional neural networks","authors":"Prasetya Widiharso, Wahyu Tri Handoko, A. Wibawa, A. N. Handayani, M. Teng","doi":"10.31763/sitech.v2i2.638","DOIUrl":null,"url":null,"abstract":"Measuring the quality of river water used as industrial wastewater disposal is needed to maintain water quality from pollution. The chemical industry produces hazardous waste containing toxic materials and heavy metals. At specific concentrations, industrial waste can result in bacteriological contamination and excessive nutrient load (eutrophication). Using the Convolutional Neural Network (CNN), the method for measuring water quality processes remote sensing images taken via an RGB camera on an Unmanned Aerial Vehicle (UAV). The parameter measured is the change in the color of the river water image caused by the chemical reaction of the heavy metal content of industrial waste disposal. The test results of the Convolutional Neural Network (CNN) method in 2.01s/step obtained the value of training loss mode 17.86%, training accuracy 90.62%, validation loss 23.43%, validation accuracy 83.33%.","PeriodicalId":123344,"journal":{"name":"Science in Information Technology Letters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in Information Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/sitech.v2i2.638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring the quality of river water used as industrial wastewater disposal is needed to maintain water quality from pollution. The chemical industry produces hazardous waste containing toxic materials and heavy metals. At specific concentrations, industrial waste can result in bacteriological contamination and excessive nutrient load (eutrophication). Using the Convolutional Neural Network (CNN), the method for measuring water quality processes remote sensing images taken via an RGB camera on an Unmanned Aerial Vehicle (UAV). The parameter measured is the change in the color of the river water image caused by the chemical reaction of the heavy metal content of industrial waste disposal. The test results of the Convolutional Neural Network (CNN) method in 2.01s/step obtained the value of training loss mode 17.86%, training accuracy 90.62%, validation loss 23.43%, validation accuracy 83.33%.
基于卷积神经网络的工业废水处理遥感水质识别
测量工业废水处理用河水的水质是保持水质不受污染的必要条件。化学工业产生含有有毒物质和重金属的危险废物。在特定浓度下,工业废物可导致细菌污染和过度的营养负荷(富营养化)。该方法利用卷积神经网络(CNN)对无人机(UAV)上的RGB相机拍摄的遥感图像进行处理。测量的参数是工业废弃物处理中重金属含量的化学反应引起的河水图像颜色的变化。卷积神经网络(CNN)方法在2.01s/step下的测试结果得到训练损失模式值为17.86%,训练准确率为90.62%,验证损失值为23.43%,验证准确率为83.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信