Multi-agent Genetic Algorithm Based on Self-Adaptive Operator

Lianshuan Shi, Huahui Wang
{"title":"Multi-agent Genetic Algorithm Based on Self-Adaptive Operator","authors":"Lianshuan Shi, Huahui Wang","doi":"10.1109/ICINIS.2012.25","DOIUrl":null,"url":null,"abstract":"The crossover and mutation rates are two important parameters of multi-objective evolutionary algorithm. The agent technology is applied to solve multi-objective problem. A new multi-objective genetic algorithm based on self-adaptive agent (SAMOGA) is proposed, in which the evolution parameters is adjusted adaptively in the evolutionary process and a new selection operator is used to select individual. The algorithm is applied to several multi-objective test functions, the simulation results show that the algorithm can converge to the Pareto solutions quickly, and has a well diversity compared with NSGA-II.","PeriodicalId":302503,"journal":{"name":"2012 Fifth International Conference on Intelligent Networks and Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The crossover and mutation rates are two important parameters of multi-objective evolutionary algorithm. The agent technology is applied to solve multi-objective problem. A new multi-objective genetic algorithm based on self-adaptive agent (SAMOGA) is proposed, in which the evolution parameters is adjusted adaptively in the evolutionary process and a new selection operator is used to select individual. The algorithm is applied to several multi-objective test functions, the simulation results show that the algorithm can converge to the Pareto solutions quickly, and has a well diversity compared with NSGA-II.
基于自适应算子的多智能体遗传算法
交叉率和突变率是多目标进化算法的两个重要参数。将智能体技术应用于多目标问题的求解。提出了一种基于自适应智能体(SAMOGA)的多目标遗传算法,该算法在进化过程中自适应调整进化参数,并使用新的选择算子对个体进行选择。将该算法应用于多个多目标测试函数,仿真结果表明,该算法能够快速收敛到Pareto解,且与NSGA-II相比具有较好的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信