Analysis of Anomalies in IBRL Data from a Wireless Sensor Network Deployment

S. Rajasegarar, J. Bezdek, C. Leckie, M. Palaniswami
{"title":"Analysis of Anomalies in IBRL Data from a Wireless Sensor Network Deployment","authors":"S. Rajasegarar, J. Bezdek, C. Leckie, M. Palaniswami","doi":"10.1109/SENSORCOMM.2007.27","DOIUrl":null,"url":null,"abstract":"Detecting interesting events and anomalous behaviors in wireless sensor networks is an important challenge for tasks such as monitoring applications, fault diagnosis and intrusion detection. A key problem is to define and detect those anomalies with few false alarms while preserving the limited energy in the sensor network. In this paper, using concepts from statistics, we perform an analysis of a subset of the data gathered from a real sensor network deployment at the Intel Berkeley Research Laboratory (IBRL) in the USA, and provide a formal definition for anomalies in the IBRL data. By providing a formal definition for anomalies in this publicly available data set, we aim to provide a benchmark for evaluating anomaly detection techniques. We also discuss some open problems in detecting anomalies in energy constrained wireless sensor networks.","PeriodicalId":161788,"journal":{"name":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORCOMM.2007.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Detecting interesting events and anomalous behaviors in wireless sensor networks is an important challenge for tasks such as monitoring applications, fault diagnosis and intrusion detection. A key problem is to define and detect those anomalies with few false alarms while preserving the limited energy in the sensor network. In this paper, using concepts from statistics, we perform an analysis of a subset of the data gathered from a real sensor network deployment at the Intel Berkeley Research Laboratory (IBRL) in the USA, and provide a formal definition for anomalies in the IBRL data. By providing a formal definition for anomalies in this publicly available data set, we aim to provide a benchmark for evaluating anomaly detection techniques. We also discuss some open problems in detecting anomalies in energy constrained wireless sensor networks.
基于无线传感器网络部署的IBRL数据异常分析
检测无线传感器网络中的有趣事件和异常行为是监测应用、故障诊断和入侵检测等任务的重要挑战。一个关键问题是如何在保证传感器网络有限能量的情况下,以较少的误报来定义和检测这些异常。在本文中,我们使用统计学的概念,对来自美国英特尔伯克利研究实验室(IBRL)的真实传感器网络部署收集的数据子集进行了分析,并提供了IBRL数据中异常的正式定义。通过为这个公开可用的数据集中的异常提供一个正式的定义,我们的目标是为评估异常检测技术提供一个基准。我们还讨论了能量受限无线传感器网络异常检测中的一些开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信