Effective indexing and filtering for similarity search in large biosequence databases

Ozgur Ozturk, H. Ferhatosmanoğlu
{"title":"Effective indexing and filtering for similarity search in large biosequence databases","authors":"Ozgur Ozturk, H. Ferhatosmanoğlu","doi":"10.1109/BIBE.2003.1188974","DOIUrl":null,"url":null,"abstract":"We present a multi-dimensional indexing approach for fast sequence similarity search in DNA and protein databases. In particular, we propose effective transformations of subsequences into numerical vector domains and build efficient index structures on the transformed vectors. We then define distance functions in the transformed domain and examine properties of these functions. We experimentally compared their (a) approximation quality for k-Nearest Neighbor (k-NN) queries, (b) pruning ability and (c) approximation quality for E-range queries. Results for k-NN queries, which we present here, show that our proposed distances FD2 and WD2 (i.e. Frequency and Wavelet Distance functions for 2-grams) perform significantly better than the others. We then develop effective index structures, based on R-trees and scalar quantization, on top of transformed vectors and distance functions. Promising results from the experiments on real biosequence data sets are presented.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We present a multi-dimensional indexing approach for fast sequence similarity search in DNA and protein databases. In particular, we propose effective transformations of subsequences into numerical vector domains and build efficient index structures on the transformed vectors. We then define distance functions in the transformed domain and examine properties of these functions. We experimentally compared their (a) approximation quality for k-Nearest Neighbor (k-NN) queries, (b) pruning ability and (c) approximation quality for E-range queries. Results for k-NN queries, which we present here, show that our proposed distances FD2 and WD2 (i.e. Frequency and Wavelet Distance functions for 2-grams) perform significantly better than the others. We then develop effective index structures, based on R-trees and scalar quantization, on top of transformed vectors and distance functions. Promising results from the experiments on real biosequence data sets are presented.
大型生物序列数据库中相似性搜索的有效索引与过滤
提出了一种用于DNA和蛋白质数据库中序列相似性快速检索的多维索引方法。特别是,我们提出了子序列到数值向量域的有效变换,并在变换后的向量上建立有效的索引结构。然后,我们定义了变换域中的距离函数,并检验了这些函数的性质。我们实验比较了它们(a) k-最近邻(k-NN)查询的近似质量,(b)修剪能力和(c) e范围查询的近似质量。我们在这里提出的k-NN查询的结果表明,我们提出的距离FD2和WD2(即2-g的频率和小波距离函数)的性能明显优于其他方法。然后,我们基于r树和标量量化,在变换向量和距离函数的基础上开发有效的索引结构。给出了在真实生物序列数据集上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信