Wafa Aouadj, Mohamed Rida Abdessemed, Rachid Seghir
{"title":"Discrete Large-scale Multi-Objective Teaching-Learning-Based Optimization Algorithm","authors":"Wafa Aouadj, Mohamed Rida Abdessemed, Rachid Seghir","doi":"10.1145/3454127.3456609","DOIUrl":null,"url":null,"abstract":"This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.","PeriodicalId":432206,"journal":{"name":"Proceedings of the 4th International Conference on Networking, Information Systems & Security","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3454127.3456609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.