Interweaving Trend and User Modeling for Personalized News Recommendation

Qinghong Gao, F. Abel, G. Houben, Ke Tao
{"title":"Interweaving Trend and User Modeling for Personalized News Recommendation","authors":"Qinghong Gao, F. Abel, G. Houben, Ke Tao","doi":"10.1109/WI-IAT.2011.74","DOIUrl":null,"url":null,"abstract":"In this paper, we study user modeling on Twitter and investigate the interplay between personal interests and public trends. To generate semantically meaningful user profiles, we present a framework that allows us to enrich the semantics of individual Twitter messages and features user modeling as well as trend modeling strategies. These profiles can be re-used in other applications for (trend-aware) personalization. Given a large Twitter dataset, we analyze the characteristics of user and trend profiles and evaluate the quality of the profiles in the context of a personalized news recommendation system. We show that personal interests are more important for the recommendation process than public trends and that by combining both types of profiles we can further improve recommendation quality.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"64 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, we study user modeling on Twitter and investigate the interplay between personal interests and public trends. To generate semantically meaningful user profiles, we present a framework that allows us to enrich the semantics of individual Twitter messages and features user modeling as well as trend modeling strategies. These profiles can be re-used in other applications for (trend-aware) personalization. Given a large Twitter dataset, we analyze the characteristics of user and trend profiles and evaluate the quality of the profiles in the context of a personalized news recommendation system. We show that personal interests are more important for the recommendation process than public trends and that by combining both types of profiles we can further improve recommendation quality.
个性化新闻推荐的交织趋势与用户建模
在本文中,我们研究了Twitter上的用户建模,并研究了个人兴趣与公共趋势之间的相互作用。为了生成语义上有意义的用户配置文件,我们提出了一个框架,该框架允许我们丰富单个Twitter消息的语义,并提供用户建模和趋势建模策略。这些配置文件可以在其他应用程序中重用,以实现(趋势感知)个性化。给定一个大型Twitter数据集,我们分析了用户和趋势概况的特征,并在个性化新闻推荐系统的背景下评估了概况的质量。我们发现,在推荐过程中,个人兴趣比公共趋势更重要,通过结合这两种类型的配置文件,我们可以进一步提高推荐质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信