Soil Moisture Estimation at 500m using Sentinel-1: application to African sites

Myriam Foucras, M. Zribi, A. Kallel
{"title":"Soil Moisture Estimation at 500m using Sentinel-1: application to African sites","authors":"Myriam Foucras, M. Zribi, A. Kallel","doi":"10.1109/ATSIP49331.2020.9231733","DOIUrl":null,"url":null,"abstract":"This paper proposes a change detection approach for the estimation of soil water content, at a spatial resolution of 0.5 km and a temporal resolution of 6 days. The algorithm proposes a soil moisture index between 0 and 1. 0 corresponds to the driest context, 1 corresponds to the wettest context. The approach is being tested on different study sites with sentinel-1 radar data. Unlike the classic change detection approach, the algorithm takes into account the effects of land use, vegetation development and the seasonal context. Results show a good correlation between satellite estimations and true measurements for the African studied regions.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a change detection approach for the estimation of soil water content, at a spatial resolution of 0.5 km and a temporal resolution of 6 days. The algorithm proposes a soil moisture index between 0 and 1. 0 corresponds to the driest context, 1 corresponds to the wettest context. The approach is being tested on different study sites with sentinel-1 radar data. Unlike the classic change detection approach, the algorithm takes into account the effects of land use, vegetation development and the seasonal context. Results show a good correlation between satellite estimations and true measurements for the African studied regions.
利用Sentinel-1估算500米的土壤湿度:在非洲站点的应用
本文提出了一种空间分辨率为0.5 km、时间分辨率为6 d的土壤含水量变化检测方法。该算法提出了一个介于0 ~ 1之间的土壤湿度指数。0代表最干燥的环境,1代表最潮湿的环境。该方法正在不同的研究地点用sentinel-1雷达数据进行测试。与传统的变化检测方法不同,该算法考虑了土地利用、植被发展和季节背景的影响。结果表明,非洲研究区域的卫星估计值与真实测量值之间具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信