Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions

Lanping Li
{"title":"Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions","authors":"Lanping Li","doi":"10.11648/J.SJAMS.20160405.16","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks which obtained under squared error loss function.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20160405.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks which obtained under squared error loss function.
不同损失函数下ЭРланга分布参数的极大极小估计
本文的目的是研究基于完全样本的ЭРланга分布参数的估计。利用共轭先验逆Gamma分布得到了ЭРланга分布参数在加权平方误差损失、平方对数误差损失和熵损失三种不同损失函数下的Bayes估计量。然后利用Lehmann定理导出了参数的极大极小估计量。最后,比较了这些估计器在误差平方损失函数下得到的风险的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信