Applications of Artificial Neural Network Analysis in Thermal Systems

R. Mahajan, K. T. Yang
{"title":"Applications of Artificial Neural Network Analysis in Thermal Systems","authors":"R. Mahajan, K. T. Yang","doi":"10.1115/imece2000-1469","DOIUrl":null,"url":null,"abstract":"\n Artificial neural networks (ANNs) are good at approximating complex and non-linear data. In addition, they have excellent predictive capabilities and can be configured to be self-adaptive. As a result of these characteristics, the potential applications of ANNs are many and in diverse fields. These range from predicting the output of a manufacturing process through differentiating between handwritten letters to predicting the winner of a horse race. In this paper, we focus on applications of artificial neural networks to thermal systems including chemical vapor deposition, thermal management and heat exchangers.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANNs) are good at approximating complex and non-linear data. In addition, they have excellent predictive capabilities and can be configured to be self-adaptive. As a result of these characteristics, the potential applications of ANNs are many and in diverse fields. These range from predicting the output of a manufacturing process through differentiating between handwritten letters to predicting the winner of a horse race. In this paper, we focus on applications of artificial neural networks to thermal systems including chemical vapor deposition, thermal management and heat exchangers.
人工神经网络分析在热系统中的应用
人工神经网络(ann)擅长于逼近复杂和非线性数据。此外,它们具有出色的预测能力,并且可以配置为自适应。由于这些特点,人工神经网络的潜在应用领域非常广泛。从通过区分手写字母来预测制造过程的产量,到预测赛马的获胜者,这些都包括在内。本文重点介绍了人工神经网络在热系统中的应用,包括化学气相沉积、热管理和换热器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信