Evaluation of Sensing and Processing Parameters for Human Action Recognition

Xiao Bo, Alan Huebner, C. Poellabauer, Megan K. O’Brien, C. Mummidisetty, A. Jayaraman
{"title":"Evaluation of Sensing and Processing Parameters for Human Action Recognition","authors":"Xiao Bo, Alan Huebner, C. Poellabauer, Megan K. O’Brien, C. Mummidisetty, A. Jayaraman","doi":"10.1109/ICHI.2017.56","DOIUrl":null,"url":null,"abstract":"Accurate recognition of human actions is essential to many health-care, entertainment, and human-computer interface applications. However, the achievable accuracy depends on a variety of parameters for the various stages of recognition, including sensing, feature extraction, and classification. In this paper, we quantitatively evaluate the classification accuracy for varying sensing rates, sensor data filtering techniques, segmentation approaches, and classification algorithms for several different types of action. The results of these evaluations provide guidelines and strategies for the design of future action recognition systems.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate recognition of human actions is essential to many health-care, entertainment, and human-computer interface applications. However, the achievable accuracy depends on a variety of parameters for the various stages of recognition, including sensing, feature extraction, and classification. In this paper, we quantitatively evaluate the classification accuracy for varying sensing rates, sensor data filtering techniques, segmentation approaches, and classification algorithms for several different types of action. The results of these evaluations provide guidelines and strategies for the design of future action recognition systems.
人体动作识别的感知与处理参数评价
对人类行为的准确识别对于许多医疗保健、娱乐和人机界面应用程序至关重要。然而,可实现的精度取决于识别各个阶段的各种参数,包括传感、特征提取和分类。在本文中,我们定量地评估了不同传感速率、传感器数据过滤技术、分割方法和几种不同类型动作的分类算法的分类精度。这些评估的结果为未来动作识别系统的设计提供了指导和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信