{"title":"A Comparative Study of Urban Mobility Patterns Using Large-Scale Spatio-Temporal Data","authors":"The Anh Dang, Jodi Chiam, Y. Li","doi":"10.1109/ICDMW.2018.00089","DOIUrl":null,"url":null,"abstract":"The large scale spatio-temporal data brought about by the ubiquitous wireless networks, mobile phones, and GPS devices present a fertile ground for studying human mobility. These data sources come with high coverage and resolution that enable studies of mobility patterns for human populations at large that other conventional methods such as surveys are not capable of. In this paper, we study anonymized spatio-temporal data from telco networks to understand the variability in human mobility behavior across different geographical regions. We present methodologies for extracting trips and other mobility features from large-scale spatio-temporal data. We also look into daily activity patterns of the populations in two specific cities, Singapore and Sydney. Our results include measures of distance and frequency of people's travel, as well as their purpose of travel, mode of transport, and route choice. We extract mobility patterns known as motifs. We also define a mobility index to assess the mobility level of individuals and compare it among different regions and demographic groups. This work contributes to a more comprehensive understanding of urban dynamics, supporting smart city development and sustainable urbanization.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The large scale spatio-temporal data brought about by the ubiquitous wireless networks, mobile phones, and GPS devices present a fertile ground for studying human mobility. These data sources come with high coverage and resolution that enable studies of mobility patterns for human populations at large that other conventional methods such as surveys are not capable of. In this paper, we study anonymized spatio-temporal data from telco networks to understand the variability in human mobility behavior across different geographical regions. We present methodologies for extracting trips and other mobility features from large-scale spatio-temporal data. We also look into daily activity patterns of the populations in two specific cities, Singapore and Sydney. Our results include measures of distance and frequency of people's travel, as well as their purpose of travel, mode of transport, and route choice. We extract mobility patterns known as motifs. We also define a mobility index to assess the mobility level of individuals and compare it among different regions and demographic groups. This work contributes to a more comprehensive understanding of urban dynamics, supporting smart city development and sustainable urbanization.