{"title":"Transient Analysis of Markovian Queueing Systems: a Survey with Focus on Closed‐forms and Uniformization","authors":"G. Rubino","doi":"10.1002/9781119755234.CH8","DOIUrl":null,"url":null,"abstract":"Analyzing the transient behavior of a queueing system is much harder than studying its steady state, the difference being basically that of moving from a linear system to a linear differential system. However, a huge amount of efforts has been put on the former problem, from all kinds of points of view: trials to find closed-forms of the main state distributions, algorithms for numerical evaluations, approximations of different types, exploration of other transient metrics than the basic state distributions, etc. In this survey we focus on the first two elements, the derivation of closed-forms for the main transient state distributions, and the development of numerical techniques. The paper is organized as a survey, and the main goal is to position and to underline the role of the uniformization technique, for both finding closed-forms and for developing efficient numerical evaluation procedures. In some cases, we extend the discussion to other related transient metrics that are relevant for applications.","PeriodicalId":192103,"journal":{"name":"Queueing Theory 2","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queueing Theory 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119755234.CH8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Analyzing the transient behavior of a queueing system is much harder than studying its steady state, the difference being basically that of moving from a linear system to a linear differential system. However, a huge amount of efforts has been put on the former problem, from all kinds of points of view: trials to find closed-forms of the main state distributions, algorithms for numerical evaluations, approximations of different types, exploration of other transient metrics than the basic state distributions, etc. In this survey we focus on the first two elements, the derivation of closed-forms for the main transient state distributions, and the development of numerical techniques. The paper is organized as a survey, and the main goal is to position and to underline the role of the uniformization technique, for both finding closed-forms and for developing efficient numerical evaluation procedures. In some cases, we extend the discussion to other related transient metrics that are relevant for applications.