An Ensemble Model Using Face and Body Tracking for Engagement Detection

Cheng Chang, Cheng Zhang, L. Chen, Yang Liu
{"title":"An Ensemble Model Using Face and Body Tracking for Engagement Detection","authors":"Cheng Chang, Cheng Zhang, L. Chen, Yang Liu","doi":"10.1145/3242969.3264986","DOIUrl":null,"url":null,"abstract":"Precise detection and localization of learners' engagement levels are useful for monitoring their learning quality. In the emotiW Challenge's engagement detection task, we proposed a series of novel improvements, including (a) a cluster-based framework for fast engagement level predictions, (b) a neural network using the attention pooling mechanism, (c) heuristic rules using body posture information, and (d) model ensemble for more accurate and robust predictions. Our experimental results suggest that our proposed methods effectively improved engagement detection performance. On the validation set, our system can reduce the baseline Mean Squared Error (MSE) by about 56%. On the final test set, our system yielded a competitively low MSE of 0.081.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"604 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Precise detection and localization of learners' engagement levels are useful for monitoring their learning quality. In the emotiW Challenge's engagement detection task, we proposed a series of novel improvements, including (a) a cluster-based framework for fast engagement level predictions, (b) a neural network using the attention pooling mechanism, (c) heuristic rules using body posture information, and (d) model ensemble for more accurate and robust predictions. Our experimental results suggest that our proposed methods effectively improved engagement detection performance. On the validation set, our system can reduce the baseline Mean Squared Error (MSE) by about 56%. On the final test set, our system yielded a competitively low MSE of 0.081.
基于面部和身体跟踪的交战检测集成模型
准确地检测和定位学习者的参与水平,有助于监测他们的学习质量。在emotiW挑战赛的参与度检测任务中,我们提出了一系列新的改进,包括(a)基于聚类的快速参与度预测框架,(b)使用注意力池机制的神经网络,(c)使用身体姿势信息的启发式规则,以及(d)模型集成以实现更准确和稳健的预测。我们的实验结果表明,我们提出的方法有效地提高了接合检测性能。在验证集上,我们的系统可以将基线均方误差(MSE)降低约56%。在最后的测试集上,我们的系统产生了0.081的具有竞争力的低MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信